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Overview
There are two competing paradigms for understanding linguistic meaning

Representationalism

Inferentialism

These correspond to two paradigms of categorical semantics

Functorial semantics

Internal logic

Both are valuable, but traditional thinking about natural language and scientific models is
largely one-sided.

So�ware developed at the Topos Institute applies this other perspective.

This permits collaboration while demanding less agreement in background
assumptions.
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Representationalism: language is descriptive
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Representationalism: order of explanation

Bottom-up order of explanation

1. Taking the world to (just) be a certain way

2. … explains what our words mean,

3. … which explains what our sentences mean,

4. … which explains what inferences are good.

This leads to atomistic semantics:

Each sentence is made true independent of the other sentences.

Each meaning can be specified independent of each other meaning.
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Representationalism: facts and values
This picture of meaning can serve as a criterion to identify when certain sentences shouldn’t
be thought of as actually contentful:

“Twas brillig, and the slithy toves …” / “Colorless green ideas sleep furiously”

“It’s immoral to do that.”

Understanding these statements as (covertly) meaningless explains why they aren’t truth-apt,
why we can’t seem to methodically resolve debates or find definitions (e.g. ethics). We’re
licensed to stop trying to resolve these debates.

However, many important concepts in science and engineering are non-representational:

Scientific methodologies of resolving debate via looking to ‘the data’ require common
ontologies / practices of interpreting data

Interesting science occurs in the regions where this isn’t true

Choosing between theories depends on aesthetic norms (e.g. beauty, simplicity)

Engineering decisions are frequently entangled with ethical concepts

All of our concepts “have attitudes”.
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Inferentialism
Bottom-up (atomistic) order of explanation

1. Taking the world to (just) be a certain way.

2. … explains what our words mean.

3. … which explains what our sentences mean.

4. … which explains what inferences are good.

Top-down (holistic) order of explanation

1. Taking some inferences to (just) be good.

2. … explains what our sentences mean.

3. … which explains what our words mean.

4. … which explains what we’re talking about.

Inferential takes the use of language to be conceptually prior to the meaning.

Sequent rules can express these usage patterns:

To understand what and means doesn’t require locating and in the world somewhere.

Mastery of the proper inferential moves of and suffice to grasp the concept.
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Two kinds of category-theoretic semantics
CT since Lawvere has a tradition understanding the meaning of something via representation
via various notions of functorial semantics: 

However, CT also comes with opinions about what things mean without saying what they
represent. These are purely based on how these things are related to each other.

Universal properties characterize what it means to be a ‘side-by-side placement’ (coproduct
), or an ‘element’ ( ) or a ‘subobject’ ( ), etc.

Functorial semantics is characterized by maps out of a category

Universal properties are characterized by maps into a category.

Mod : →

A + B 1 → X X ↣ Y

Duality of the approaches
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Examples
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Example 1: chemical kinetics modeling
Imagine a very basic form of chemistry that develops around trying to make sense of changing
quantities of substances.

The changes in quantities are attributed to “reactions”, and an experiment is explained by
constructing a model such as “ , , ”.A → B B → C C → A
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C-Sets: Graphs as representational modeling language
We can think of directed multi-graphs as functors
into  from a particular ‘schema’ category.

We can depict these -Sets in a tabular format,
where the outgoing arrows correspond to functions
(which are represented as columns).

The natural choice of morphism between functors,
i.e. natural transformations, lines up perfectly with
the ordinary notion of graph homomorphism.

Being a functor into , this model can be thought
of representationally: as describing the world as
really having three species and two reactions which
form a path.

But different graphs purporting to represent the
same phenomenon are making mutually
incompatible claims.
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C-Sets: Comparing models

We can gain understanding of a model by recognizing it as, e.g., a subobject or (co)product of
other models we feel we have a better grip on.
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C-Sets: Comparing models at a lower level of abstraction

We view each model as a “schema” of sorts with models being assignments of parameters1 to obtain dynamical systems.

 is a recipe for taking
 models and

producing  models.

 is characterized by a
universal property. It is the
most conservative way to
do this interpretation in a
precise sense.

Level shi� down

f
Line

Tri
mf∗
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C-Sets: Comparing models at a higher level of abstraction

We view each schema as a model of a theory of categories (  is the category of models).

Challenge assumptions:
why can’t reactions have
more than one src or tgt?

These different
perspectives (different
schemas) come with
different trade-offs.

Level shi� up

These people ought be able to productively communicate with each other, rather than:

“Edges by definition aren’t the sort of thing that have two sources. You’re saying nonsense!”

“Your model claims that ‘inputs’ and ‘outputs’ really exist. But all there really is in the
chemical world are species and reactions. Show me where the ‘inputs’ are in the plot!”
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C-Sets: Comparing models at a higher level of abstraction

 is a recipe for taking  models and producing  models.

 is characterized by a universal property: we understand what the model is in relation to 
and all other models of the relevant kind.

F
ΔF F
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C-Sets: What have we accomplished?
1. Showed that, from ’s perspective, that  isn’t nonsense (and vice-versa)

Made explicit how it’s possible for  and  to be about the same thing (via )

2. Shown  under which conditions (in ’s vocabulary) they aren’t in conflict at all

Namely, all transitions have exactly one input and output.

F

A pure representationalist attitude encourages us to view conflict as irreconcilable:

 is literally referring to things which don’t exist

 is literally saying that reactions have more than one source/target.

Tri

Here, our common sense lies squarely opposed to this:
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Example 2: so�ware design
Computational science involves lots of messy, unmaintainable, untrustable code.

Interfaces play the role of schemas in the previous example. They help give code structure.

The interface of a monoid is defined in  below:

A generalized algebraic theory consists in
judgments (type constructors, term constructors,
and axioms).

These judgments are built out of types, terms, and
contexts.

GATlab
@theory ThMonoid begin
  # Carrier type constructor
  X::TYPE 
  # Unit element term constructor
  e()::X 
  # Multiplication term constructor
  (x ⋅ y)::X ⊣ [x::X, y::X] 
  # Unitality axiom
  e ⋅ x == x == x ⋅ e ⊣ [x::X, y::X] 
  # Associativity axiom
  x⋅(y⋅z) == (x⋅y)⋅z ⊣ [x::X, y::X, z::X] 
end

Defining a monoid interface is helpful; we can write the following code once:
function aggregate_monoid_list(model::Monoid{M}, elems::Vector{M})::M where M
  @withmodel model (e, ⋅) begin 
    result = e()
    for elem in elems 
      result = result ⋅ elem
    end
    return result
  end
end
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Verifying interface implementations
Implementations of an interface (i.e. models of a theory) send the type constructors to
datatypes in one’s language and term constructors to functions. Valid implementations
respect the axioms.
@instance ThMonoid{Int} [model::NatPlus] begin 
  e() = 0
  ⋅(x::Int,y::Int) = x + y
end

@instance ThMonoid{Int} [model::NatTimes] begin 
  e() = 1
  ⋅(x::Int,y::Int) = x * y
end

How do we know if the implementation is valid given that the axioms are quantified over all
possible inputs? There are two plausible approaches:

1. Static verification

This will not help us verifying models in isolation because arbitrary, general-purpose code is
allowed in the declaration of implementations.

2. Property-based testing (systematically check a finite number of inputs)

This will not help us verifying models in isolation because there is no canonical way to
enumerate values of arbitrary types in a general-purpose language.
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Verifying implementations compositionally
What we care about is verifying a particular interface. But this is intractable in isolation.

A GAT morphism  maps type constructors in  to types in  and term constructors
in  to terms in  such that axioms are preserved.

This finite data can be verified (via a semidecidable e-graph algorithm).

Given such a morphism , we have canonical ways of translating models between the
theories, analogously to what we saw for -Sets.1

F : A → B A B
A B

F

# ThNatPlus defines ℕ, Z(ero), S(uccessor), and +
@theory ThVect <: ThNatPlus begin
  X::TYPE
  Vect(len::ℕ)::TYPE
  empty()::Vect(Z)
  concat(x::Vect(n), y::Vect(m))::Vect(n+m) ⊣ [(n,m)::ℕ]
  push(x::X, v::Vect(n))::Vect(S(n)) ⊣ [n::ℕ]  

  concat(v, push(x,w)) == push(x, concat(v,w)) 
    ⊣ [(n,m)::ℕ,v::Vect(n),w::Vect(m), x::X] 
end

@theorymap F(ThMonoid, ThVect) begin
  default() => Vect
  e() => empty()
  (a⋅b) ⊣ [(a,b)::default] => concat(a,b)
end

@assert is_natural(F) # run e-graph test

@withmodel Δ(F, MyVectImpl) (e, ⋅) begin 
  @assert [1,2,3]⋅e()⋅[4,5] == [1,2,3,4,5]
end

We haven’t verified Δ(F, MyVectImpl) is a valid ThMonoid model, but it is if
MyVectImpl is a valid ThVect model. The problem is reduced if have a better
understanding of the ThVect code or choose to trust that code.
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Verifying implementations compositionally
If our datatypes are models of GATs, then we do have a systematic way of enumerating the
possible values for property-based testing:
@theory ThReflGraph begin
  V::TYPE;
  E(src::V, tgt::V)::TYPE
  refl(v::V)::E(v,v) # a reflexive edge
end

# assuming coproduct(ReflGraph, ReflGraph) is defined
@instance ThMonoid{ReflGraph} [model::Coprod] begin 
  e() = ReflGraph() # empty graph
  ⋅(x::ReflGraph,y::ReflGraph) = apex(coproduct(x, y))
end
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Conclusions
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Conclusions: problems with representationalism?
Key components of the representationalist worldview are undercut by philosophical
arguments from Quine, Sellars, Wittgenstein, Putnam, and many others.1

Formal theories have logical and extralogical symbols. E.g. 

The practical usage of formal theories involves taking the extralogical symbols to refer to
aspects of our ordinary (informal) understanding of the world.

F = m ⋅ a

It can be very helpful to express a scientific model as a map . However, it’s easy
to trick ourselves into thinking we’ve formalized the reference-binding process itself. However,
the  side is just as much of a formal object as the  side.

It is only in virtue of collaborators performing this informal activity in a compatible way that
models can appropriately function. But we are interested in cases where people don’t do this
in the same way, or disagree on what aspects of the world exist to be represented.

M : T → W

W T
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Conclusions: negotiating frame vs content

For a fixed frame, there might be a relatively straightforward process of negotiating content.
But if we find this difficult, we can level shi� upwards and seek a new frame in which our two
frames are the content itself.

This is just codifying common sense of how reasonable people work out disagreements
(offering arguments, finding common ground). We’re at risk of losing our grip on this common
sense when we start thinking that science and mathematics are an exception: that one can be
speaking ‘nonsense’ by making apparent contradictions.

We can take someone to be saying nonsense (meaning: we give up on finding common
ground) but math does not obligate us to do this; it’s something we must occasionally do, but
also it’s something we should do deliberately and take responsibility for.
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Consequences for scientific practice
Operationalize some common sense:

apparent conflicts in our usage of terminology can be rationally resolved

Pluralism of theories and methodologies and ontologies

Not a trivial kind of pluralism: finding common ground requires hard conceptual work

An openness to confronting ethical / aesthetic aspects of scientific practice

Opening the possibility of these being meaningful (even if not located ‘in the world’)

Allowing there to be reasons for or against claims of this kind.

Common templates for collective sensemaking

Categorification, (Co)limits, data migrations
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Extra slides
Twenty minutes isn’t a lot of time
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What is good about representationalism?
Language is compositional:1 we can explain this
(miraculous) fact by appealing to formal semantic models.

Making a distinction between what we are saying and
what we are talking about.

A great deal of inference naturally accounted for by this
bottom-up, atomistic story.

In particular, models are essential to science. They allow
one to make inferences, provided one assigns referents to
the (formal) aspects of the theory.

Atomistic semantics are practically convenient: the
meaning of ‘green’ can’t possibly depend on the meaning
of ‘red’ or whether or not it is a Tuesday. Meaningful
sentences are made true independent of any context, and
managing context is hard.
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Conclusions: normativity of reference

Here the categorical approach is making explicit the  data: in order to relate these two
models, we have to make a commitment (a choice). The co-reference does not come from the
names anyone chose.

This is intimately connected to inferentialist solutions to paradoxes of representationalism and
reference: reference is normative.

ι
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Inferentialism
Imagine you are a baby. You hear people saying opaque things.

You naturally pick up the practical skill of saying things (first: repeating the noises) yourself.

Via feedback, you start to gain partial mastery of norms: what actions are permissible /
obligatory, including making vocalizations among these actions.

You can’t help but pick up on certain correlations: you hear “You are a baby” and learn the
move to saying yourself “I am a baby”. “You are being loud” to “I am being loud”. You start to
act in accordance with the rule “You are ” to “I am ”. One aspect of what “You are ” means
to you is that you are entitled to assert “I am ”.

Eventually you gain enough proficiency that you taken to have an understanding of what you
say. You can be held responsible (it becomes possible for you to lie, to say that such-and-such
is the case, to think).

Sometimes we can very concisely express what role something plays in inference:

φ φ φ
φ
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Representationalist platitudes: the fact-value dichotomy
One who says “Is that supposed to be a fact or a value judgment?” o�en presupposes:

If it’s a value judgment, it can’t be a fact.

Value judgments are subjective and cannot be verified.

Moral/aesthetic arguments involve only persuasion, not reasoning or logical argument.

What makes science rational is that its subject matter is matters of fact. Science consists of
deductive/inductive methods which rationally settle disagreements

The analytic/synthetic dichotomy:

if  is true, then  is true either by definition (convention) xor made true by the world.p p

Putnam: These beliefs are “culturally institutionalized”1

They tend to persist even though the philosophers who accept them acknowledge that the
arguments for them are terrible.
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Arguments against representationalism: Quine
Two dogmas of empiricism: we can’t specify the meanings of words first and then look to the
world to see what facts are true. What something means is contingent on what facts we take to
be true, so the dichotomy of statements between analytic (which are true purely in virtue of
the meanings alone, such as “all bachelors are men” and “1+1=2”) and synthetic (“the Earth is
larger than the Moon”) is bankrupt.
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Arguments against representationalism: Sellars
Myth of the Given: experience is conceptually-articulated - the dichotomy of mental events
between raw sense impressions and conceptual inferences is bankrupt. ‘Raw sense
impressions’ makes sense in a scientific causal picture, applying equally to thermostats and
animals. But our perceptions are the kind of thing that can serve as evidence in justifying
claims, meaning they are conceptually-articulated.
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Arguments against representationalism: Wittgenstein
Private language argument: intentionality is a social product, not a private relation between
thinker and world. One cannot follow a rule (e.g. the meaning of a word) in isolation because
any behavior can be understood as in accord with the rule (e.g. the multiplicity of rules one
could have been following to generate any particular sequence of numbers). The social
practices which litigate whether one is following a rule are themselves constitutive of the rule.
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Arguments against representationalism: Putnam
Arguments against moral facts cut against ‘epistemic facts’ as well. Humean noncognitivism
about ethics stems from that a fact is something we can perceive, and we don’t have sense
impressions of ‘goodness’.

But neither do we have them for ‘simplicity’ or ‘coherence’, which are essential epistemic
virtues for science.

Without the hope of agreement, argument would be pointless.

It doesn’t follow that, without reaching an agreement, the argument was pointless.

Although there is something characteristic about objective (descriptive) talk and subjective
(normative) talk, these are not dichotomies.

Representationalism is wrapped up with problematic dichotomies such as facts and values,
meaning and use, perceptions and beliefs.
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Implication frames
The philosophical problems with representationalism came from first trying to specify
meaning and then specify use.

In an implication frame,

The models hitherto discussed were calculational devices for managing commitments and
entitlements. What would a language look like that represents these directly?

There is much to say about the mathematics underlying logical expressivism, and there is a lot
of interesting future work to do. A future blog post will methodically go over this, but this
section will just give a preview.
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Implication frames
An implication frame (or: vocabulary) is the data of a  relation, i.e. a lexicon  (a set of
claimables: things that can be said) and a set of incoherences, , i.e. the good
implications where it is incoherent to deny the conclusions while accepting the premises.

Given any base vocabulary , we can introduce a logically-elaborated vocabulary
whose lexicon includes  but is also closed under . The  of the logically-
elaborated relation is precisely  when restricted to the nonlogical vocabulary (i.e. logical
vocabulary must be ), and the following sequent rules indicate how the goodness
of implications including logical vocabulary is determined by implications without logical
vocabulary.

∣
⊆ ( + )

X = ( , )X X

X ¬,→, ∧, ∨
X

harmonious
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Implication frames
The double bars are bidirectional meta-inferences: thus they provide both introduction and
elimination rules for each connective being used as a premise or a conclusion. They are
quantified over all possible sets  and . The top of each rule makes no reference to logical
vocabulary, so the logical expressions can be seen as making explicit the implications of the
non-logical vocabulary.

Vocabularies can be given a semantics based on implicational roles, where the role of an
inference  is the set of implications  in which  is a good inference:

The role of an implication can also be called its range of subjunctive robustness.

Γ Δ

a ∣  b Γ ∣  Δ a ∣  b

(a ∣  b := {(Γ, Δ)   Γ, a ∣  b, Δ ∈ })∗
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Implication frames
To see an example, first let’s remind ourselves of our  (“The cat has four legs”) and  (“The cat
lost a leg”) example, a vocabulary which we’ll call :

0

0

The role of  (i.e.  ) in vocabulary  is the set of all 16 possible implications except for 
and .

The role of a set of implications is defined as the intersection of the roles of each element:

q r
C = ( = {q, r}, )C C

C q− r − q− r −

×

q+ × ×

r + × ×
q+ r +

q− ∣  q C r ∣
r ∣  q

:=Γ∗
γ∈Γ

γ∗
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Implication frames
The power set of implications for a given lexicon have a quantale structure with the 
operation:

Roles are naturally combined via a dual operation, :

A pair of roles (a premisory role and a conclusory role) is called a conceptual content: to see
why pairs of roles are important, consider how the sequent rules for logical connectives are
quite different for introducing a logically complex term on the le� vs the right of the turnstile;
in general, the inferential role of a sentence is different depending on whether it is being used
as a premise or a conclusion. Any sentence  has its premisory and conclusory roles as a
canonical conceptual content, written in typewriter font:

⊗

Γ ⊗ Δ := {γ ∪ δ   (γ, δ) ∈ Γ × Δ}

⊔

⊔ := ( ⊗r1 r2 r ∗1 r ∗2 )
∗

a ∈

:= ((a ∣ , (∣  a ))∗ )∗
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Implication frames
Below are recursive semantic formulas for logical connectives: given arbitrary conceptual
contents  and , we define the premisory and conclusory roles of
logical combinations of  and . Because  is an operation that depends on all of , this is
both a compositional and a holistic semantics.

Connective Premisory role Conclusory role

Note: each cell in this table corresponds directly to a sequent rule further above, where
combination of sentences within a sequent corresponds to , and multiple sequents are
combined via .

= ( , )a+ a− = ( , )b+ b−
⊔

¬ a− a+

∧ ⊔a+ b+ ∩ ∩ ( ⊔ )a− b− a− b−

∨ ∩ ∩ ( ⊔ )a+ b+ a+ b+ ⊔a− b−

→ ∩ ∩ ( ⊔ )a− b+ a− b+ ⊔a+ b−

⊔
∩
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Implication frames
There are other operators we can define on conceptual contents, such as  and

.

Given two sets ,  of conceptual contents, we can define
content entailment:

:= ( , )+ a+ a+
⊔ := ( ⊔ , ⊔ )a+ b+ a− b−

= { , . . . , }1 m = { . . . , }1 n

 ∣∣∼  := ⊆ ⊔. . . ⊔ ⊔ ⊔. . . ⊔∗ +
1

+
m

−
1

−
n
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Implication frames
A preliminary computational implementation (in Julia,  on Github) supports declaring
implication frames, computing conceptual roles / contents, and computing the logical
combinations and entailments of these contents. This can be used to demonstrate that this is
a supraclassical logic:1 this semantics validates all the tautologies of classical logic while also
giving one the ability to reason about the entailment of nonlogical contents (or combinations
of both logical and nonlogical contents).

available

C = ImpFrame([[]=>[:q], []=>[:q,:r], [:q,:r]=>[]], [:q,:r]; containment=true)
,  = contents(C)            # canonical contents for the bearers q and r
∅ = nothing                   # empty set of contents
@test ∅ ⊩ (((  → ) → ) → ) # Pierce's law
@test ∅ ⊮ ((  → ) → )       # not Pierce's law
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Interpretations
We can interpret a lexicon in another vocabulary. An interpretation function 
between vocabularies assigns conceptual contents in  to sentences of . We o�en want the
interpretation function to be compatible with the structure of the domain and codomain: it is
sound if for any candidate implication in , we have  iff .

[[−]] : A → B
B A

A Γ   Δ∣ C [[Γ]]   [[Δ]]∣∣∼ B
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Interpretations
To see an example of interpretations, let’s first define a new vocabulary  with .

: “It started in state ”

: “It’s presently in state ”

: “There has been a net change in state”.

0

0

S = {x, y, z}S

x s
y s
z

S x− y− z− x− y− x− z− y− z− x− y− z−

× × × × × × ×

x+ × ×

y+ × × × ×
z+ × × × ×

x+ y+ × ×

x+ z+ × ×
y+ z+ × ×
x+ y+ z+
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Interpretations
 claims it is part of our concept of ‘state’ that something stays in a given state, unless its state

has changed (hence there is a similar non-monotonicity to the one in , but now with 
and ). We can understand what someone is saying by  or  in terms of interpreting
these claimables in . The interpretation function  and  is sound. We
can offer a full account for what we meant by our talk about cats and legs in terms of the
concepts of states and change.

S
C x ∣  y

x, z ∤∼ y r q
S q ↦ ⊔+ r ↦ ⊔+
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Interpretations
We could also start with a lexicon  and interpretation function  and

; we can compute what structure  must have in order for us to see  as
generated by the interpretation of  in . Below  means that it doesn’t matter whether
that implication is in :

0

0

= {x, y, z}D q ↦ →
r ↦ → D C

q, r D ?
D

D x− y− z− x− y− x− z− y− z− x− y− z−

? ? ? ? ? ?

x+ × ×

y+ × ? ?
z+ ? ? ?

x+ y+ ? ×

x+ z+ ? ×

y+ z+

x+ y+ z+ ?
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Interpretations
We can do the same with  and .

0

0

q ↦ ∧ r ↦ ∧

D x− y− z− x− y− x− z− y− z− x− y− z−

×

x+ ? ? ? ?
y+ ? ? ? ?
z+ ? ? ? ?

x+ y+ × ×
x+ z+ × ×

y+ z+ × ×

x+ y+ z+
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Interpretations
Interpretation functions can be used to generate vocabularies in via a sound_dom function in
our so�ware implementation, which constructs the domain  of an interpretation function
from the assumption that it is sound. The following code witnesses how we recover our earlier
vocabulary  via interpretation functions into the vocabularies  and  above.C S D
S = ImpFrame([[:x]=>[:y], [:x]=>[:y,:z], [:x,:y,:z]=>[]]; containment=true)
, ,  = contents(S) 
⁺ = Content(prem( ), prem( ))
f = Interp(q = ⁺  , r = ⁺  )
@test sound_dom(f) == C

D = ImpFrame([[]=>[:x], []=>[:y], []=>[:x,:y], []=>[:x,:z],
              []=>[:y,:z],[]=>[:x,:y,:z],[:x,:y,:z]=>[]]; containment=true)
, ,  = contents(D) 
f = Interp(q =  ∧ , r =  ∧ )
@test sound_dom(f) == C
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